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Abstract
Introduction The present paper summarizes research using
animal models to investigate the roles of thermosensitive tran-
sient receptor potential (TRP) channels in somatosensory
functions including touch, temperature, and pain. We present
new data assessing the effects of eugenol and carvacrol, ago-
nists of the warmth-sensitive TRPV3, on thermal, mechanical,
and pain sensitivity in rats.
Methods Thermal sensitivity was assessed using a thermal
preference test, whichmeasured the amount of time the animal
occupied one of two adjacent thermoelectric plates set at dif-
ferent temperatures. Pain sensitivity was assessed as an
increase in latency of hindpaw withdrawal away from a
noxious thermal stimulus directed to the plantar hindpaw
(Hargreaves’ test). Mechanical sensitivity was assessed by
measuring the force exerted by an electronic von Frey
filament pressed against the plantar surface that elicited
withdrawal.
Results Topical application of eugenol and carvacrol did not
significantly affect thermal preference, although therewas a trend
toward avoidance of the hotter surface in a 30 vs. 45 °C
preference test for rats treated with 1 or 10 % eugenol and car-
vacrol. Both eugenol and carvacrol induced a concentration-
dependent increase in thermal withdrawal latency (analgesia),
with no significant effect on mechanosensitivity.
Conclusions The analgesic effect of eugenol and carvacrol is
consistent with previous studies. The tendency for these

chemicals to increase the avoidance of warmer temperatures
suggests a possible role for TRPV3 in warmth detection, also
consistent with previous studies. Additional roles of other
thermosensitive TRP channels (TRPM8 TRPV1, TRPV2,
TRPV4, TRPM3, TRPM8, TRPA1, and TRPC5) in touch,
temperature, and pain are reviewed.

Keywords Eugenol . Carvacrol . TRPV3 . TRPV1 .

TRPA1 . TRPM8 . Pain . Temperature . Touch

Introduction

Since the mid-20th century, many substantial research at-
tempts have been made to elucidate the mechanisms of pain
using animal models (Mogil 2009; Mogil et al. 2012). Within
the last two decades, thermosensitive transient receptor poten-
tial (TRP) channels have been shown to play an important role
in somatosensation, including the transduction and encoding
of thermal, mechanical and chemical stimuli (Cortright et al.
2007; Levine and Alessandri-Haber 2007; Myers and Julius
2007; Patapoutian et al. 2003; Stucky et al. 2009). TRP chan-
nel agonists elicit irritation (i.e., burning, pricking/stinging,
and numbing) in human subjects. TRP channels expressed
on sensory nerve fibers are thought to contribute to the chem-
ical sensibility of the skin and mucous membranes, also
known as chemesthesis. Chemesthetic sensations are evoked
when chemicals open channels expressed by sensory nerve
fibers involved in nociception, temperature, or mechanical
sensation. Within six of the subfamilies (TRPV, TRPM,
TRPC, TRPA, and TRPP), eight TRP channels exhibit sensi-
tivity to changes in environmental temperature, osmotic/
mechanical pressure, as well as chemical ligands. These
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chemicals include many commonly used food spices such as
capsaicin from chili peppers, menthol from mint, mustard oil,
cinnamaldehyde from cinnamon, piperine from black pepper,
eugenol from cloves, carvacrol from oregano, and many
others (Caterina and Julius 2001; Peier et al. 2002; Bandell
et al. 2004; Bautista et al. 2005; McNamara et al. 2005; Willis
2009). In this paper, we summarize the properties of the cur-
rently known thermo TRP channels (TRPV1, TRPV2,
TRPV3, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC5),
effects of their agonists on somatosensation (pain, tempera-
ture, and touch), and the potential underlying neural mecha-
nisms. Particular emphasis is placed on our recent studies of
the TRPV3 agonists, eugenol and carvacrol, on thermal and
mechanical stimulation in rats.

Materials and Methods

Animals

Adult male Sprague–Dawley rats (~200–400 g, Simonsen
Laboratories) were housed in pairs and given rodent chow
and water ad libitum. Behavioral studies were conducted at
approximately the same time each day to reduce circadian
effects, in a quiet room with the temperature maintained con-
stant at 22–24° by thermostat. The study protocols were ap-
proved by the UC Davis Animal Care and Use Committee.

Chemical Application

Eugenol and carvacrol (Sigma-Aldrich, St. Louis, MO) were
emulsified in 10 % ethanol and 1 % Tween-80 (Fisher Scien-
tific, Fair Lawn, NJ) at concentrations of 0.1, 1.0, 10, or 30 %.
Eugenol or carvacrol was topically applied by cotton tip ap-
plicator to one (for thermal and mechanical paw withdrawal
tests) or both ventral hindpaws (for thermal preference testing)
allowed to dry for 2 min, and the paw(s) was (were) wiped dry
prior to placing the animal in to the test arena. Eugenol and
carvacrol were also intradermally injected in separate groups
of animals into the ventral plantar surface in a volume of 10 μl
using a 30.5 G hypodermic needle connected to a Hamilton
microsyringe.

Thermal Preference Test

The apparatuses and protocols for behavioral testing were the
same as those employed by Klein et al. (2010), and are de-
scribed briefly here. The rats were habituated to the test arena
with both thermoelectric plates set at 30 °C, for a minimum of
three successive daily exposures. Vehicle-treated rats exhibit-
ed no preference for either surface when they were both set at
30 °C, indicating an absence of positional preference. Prefer-
ence testing was done by setting one plate at 30 °C and the

other plate at a higher temperature in 5 °C increments, using a
counterbalanced design to avoid order effects and possible
lighting inconsistencies within the room. Eugenol, carvacrol,
or vehicle was topically applied bilaterally as described above.
The rats were placed onto one of the plates in a matched block
design alternating initial rat position and temperature on each
plate. Animals were videotaped from above for at least
20 min, and the time the animal spent on each plate was
monitored offline and recorded. At least 2 days intervened
between successive tests when using the same rat.

Thermal Paw Withdrawal (Hargreaves) Test

Rats were first habituated to stand on a glass surface heated to
30 °C in individual Plexiglas enclosures for 1 h for a minimum
of three successive daily exposures. Before chemical injec-
tion/application, baseline latencies for paw withdrawals
evoked by radiant thermal stimulation were measured using
a light beam (Plantar Test 390, IITC, Woodland Hills, CA)
focused onto the ventral plantar surface of the hind paw. La-
tencies from onset of the light exposure to paw withdrawal/
flinching of the stimulated paw were measured on each
hindpaw. A 20-s cut-off was used if no paw movement oc-
curred to prevent tissue damage. The latencies for the treated
(i.e., ipsilateral) and untreated (i.e., contralateral) paw were
measured at 3, 15, 30, 45, 60, and 120 min postinjection/
application to one hindpaw.

von Frey mechanical paw withdrawal threshold: Rats were
first habituated over three successive days to stand on a wire
mesh screen surface. Baseline mechanical withdrawal thresh-
olds were assessed using an electronic von Frey filament
(1601C, IITC) that was pressed against the ventral plantar
surface. The force in grams was recorded at the moment that
the hind paw was withdrawn away from the instrument. Me-
chanical paw withdrawal thresholds were measured at the
same postapplication times as noted above for thermal paw
withdrawals for vehicle-, eugenol-, and carvacrol-treated
animals.

Statistical Analysis

For thermal preference testing, the percent time spent on the
30 °C plate for each animal was subjected to a one-way anal-
ysis of variance (ANOVA)with post hoc LSD tests comparing
each treatment group. Thermal and mechanical withdrawal
responses were normalized to baseline averages and subjected
to two-way repeated measures analysis of variance (ANOVA)
using SPSS 9.0 software (SPSS, Chicago IL). Multiple com-
parisons were done post hoc using least significant difference
(LSD) tests. A 95 % confidence interval was used and the
error reported is the standard error of the mean.
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Results

TRPV1

The first cloned thermo TRP channel, TRPV1, is expressed by
sensory (i.e., dorsal root ganglion [DRG] and trigeminal gan-
glion [TG]) neurons and is activated by capsaicin, piperine,
zingerone (found in ginger), anandamide, prostaglandins, bra-
dykinin, and the capsaicin analogs olvanil and resiniferatoxin.
Since TRPV1 is activated by both capsaicin and temperatures
above 43 °C (Caterina et al. 1997; Caterina and Julius 2001), it
appears that TRPV1 is responsible for the pungent burning
irritation and extreme heat sensation elicited by chili peppers.
Capsaicin, piperine, and zingerone all elicited irritant sensa-
tions of burning quality when applied to the lingual surface in
humans (Green 1993; Dessirier et al. 1999). Intraplantar ad-
ministration of capsaicin evoked hindpaw licking and biting in
rats and mice (Klein et al. 2011; Sakurada et al. 1992). Cap-
saicin, olvanil, and piperine all evoked ocular wiping after
corneal exposure in mice (Ursu et al. 2010; Karai et al.
2004). Intraplantar injection of anandamide, prostaglandins,
and bradykinin all evoked nocifensive behaviors (e.g., paw
lifting, flinching, and licking) in rats (Hong and Abbott
1994; Potenzieri et al. 2009). Together, these studies indicate
that TRPV1 is highly conserved among mammals and its ac-
tivation is accompanied by nociceptive sensations.

In humans, intracutaneous injection of capsaicin induced
primary heat hyperalgesia and primary and secondary me-
chanical allodynia (Simone et al. 1987; LaMotte et al. 1991).
In electrophysiological experiments, capsaicin sensitized C-
fiber nociceptors (Baumann et al. 1991) and responses of pri-
mate spinothalamic tract neurons (Simone et al. 1991). In
contrast, capsaicin did not affect cold pain in human skin
(Simone et al. 1987; Simone and Ochoa 1991) or tongue
(Albin et al. 2008), which is consistent with previous studies
showing no deficits in cold-evoked behavioral responses in
TRPV1 knockout mice.

TRPV1 knockout mice exhibited reduced responses to
strongly noxious (>50 °C) thermal stimuli and to capsaicin
exposure (Caterina et al. 2000). In rodents, intraplantar injec-
tion of capsaicin induced a concentration-dependent heat
hyperalgesia and mechanical allodynia (Gilchrist et al.
1996). Capsaicin also produced a facial heat hyperalgesia
and mechanical allodynia in rats as assessed using an operant
response model (Neubert et al. 2005). Prostaglandins, which
are released during inflammation or following thermal/
chemical injury, also induced heat hyperalgesia after
intraplantar administration; these effects were absent in
TRPV1 knockout animals (Moriyama et al. 2005). Unlike
most other TRPV1 agonists, anadamide delivered intrathecal-
ly (i.t.) did not appear to promote hyperalgesia as assessed
using a radiant paw withdrawal test (Horvath et al. 2008).
The thermal hyperalgesia seen with TRPV1 agonists may

occur at least partly at a peripheral site on sensory nerve end-
ings expressing TRPV1, since capsaicin enhanced the re-
sponses of DRG cells to heat (Guenther et al. 1999).

TRPV2

TRPV2 is expressed in medium to large, myelinated TG and
DRG cells (Caterina et al. 1999; Ichikawa and Sugimoto
2000) as well as other tissues including central nervous system
(Lewinter et al. 2004), intestine (Kashiba et al. 2004), pancre-
as (Hisanaga et al. 2009), and muscle cells (Muraki et al.
2003). TRPV2 is sensitive to Δ-9-tetrahydrocannabinol
(THC), cannabidiol and probenecid (Qin et al. 2008; Bang
et al. 2007). Although systemic and local injections of THC
into the hindpaw of male or female rats induced analgesia
lasting at least one week posttreatment with complete
Freund’s adjuvant (CFA; Craft et al. 2013), this was most
likely due to activation of cannabinoid CB2 receptors rather
than TRPV2. Probenecid, a highly selective TRPV2 agonist,
was first shown to evoke nociceptive behaviors (e.g., licking
and flinching) after intradermal injection, but only after an
inflammatory mediator, such as CFA or carageenan, was ad-
ministered first (Bang et al. 2007). This suggests that TRPV2
plays a role in nociception after tissue injury but not under
normal conditions.

TRPV2 is of interest within the pain field because of its
response to intense levels of noxious heat (~52 °C; Caterina
et al. 1999). Since TRPV2 is expressed bymyelinated fibers, it
has been postulated that TRPV2 mediates the first (bright and
pricking) pain sensation conducted by myelinated heat-
sensitive nociceptors (Price and Dubner 1977; Leffler et al.
2007). DRG cells expressing either TRPV2 or TRPV1/
TRPV2 rapidly sensitized to repeated noxious heating (Rau
et al. 2007). Conversely, neurons lacking TRPV1 and TRPV2
have been reported to exhibit normal responses to noxious
heating (Woodbury et al. 2004). Unlike capsaicin, which rap-
idly induces mechanical allodynia and thermal heat
hyperalgesia after intrathecal or intraplantar application, pro-
benecid only enhanced mechanical hypersensitivity (Petitjean
et al. 2014). Therefore, it is postulated that TRPV2may have a
large role in mechanotranduction, rather than in processing
nociceptive heat information. This is consistent with observa-
tions that many TRPV2-positive neurons are not heat-
sensitive and are expressed by either Aδ high-threshold mech-
anoreceptors or Aβ rapidly adapting low-threshold fibers
(Lawson et al. 2008). However, it has been shown using as-
says of acute thermal (e.g., tail immersion), mechanical (e.g.,
von Frey mechanical threshold), or chemical nociception
(e.g., formalin and capsaicin eye wipes), or in models of
chronic pain (e.g., CFA and spinal nerve ligation), that
nocifensive behaviors were all normal in TRPV2 knockout
mice (Park et al. 2011). The role of TRPV2 in processing
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sensory information in naive and chronic pain conditions will
need to be further studied.

TRPV3

TRPV3 is found in the central nervous system (Smith et al.
2002) and skin keratinocytes (Chung et al. 2004; Peier et al.
2002) as well as in sensory neurons (Xu et al. 2002). TRPV3
activity can be initiated or potentiated by endogenous ligands
including ATP, arachidonic acid, or protein kinase C (Hu et al.
2006), which makes TRPV3 a good target candidate for in-
flammatory pain. TRPV3 is also activated by many aromatic
compounds found in commonly used spices. These com-
pounds include the monoterpenoids such as eugenol, carva-
crol, and thymol (found in thyme; Xu et al. 2006; Vogt-Eisele
et al. 2007). TRPV3 also responds to innocuous warming
(>33 °C) especially within the physiological range of 36–
38 °C (Xu et al. 2002). Farnesyl pyrophosphate (FPP) was
recently reported to selectively activate TRPV3 in transfected
HEK293 cells.When applied intradermally into the hindpaws,
FPP-evoked nociceptive behaviors (i.e., paw lifting and lick-
ing; Bang et al. 2010). Eugenol and carvacrol activate highly
overlapping populations of primary and secondary trigeminal
neurons responsive to other TRP channel agonists, including
capsaicin and cinnamaldehyde (Klein et al. 2014).

Mice lacking TRPV3 were originally reported to have def-
icits in detecting temperatures in the warm and noxious (50–
52 °C) range, as assessed using thermal gradient and tail im-
mersion tests, respectively (Moqrich et al. 2005). This sug-
gests roles for TRPV3 in innocuous warmth sensation and
potentially heat-induced pain. The role of TRPV3 in murine
heat sensation has been debated and appears to be background
strain-dependent (Huang et al. 2011). An alternative explana-
tion could involve a synergy between TRPV3 and another
heat-sensitive ion channel, perhaps TRPV1. TRPV1/TRPV3
double knockout mice exhibited a larger deficit in sensitivity
to heat in the 48–50 °C range compared to single TRPV1 or
TRPV3 knockout animals, as assessed by hot plate, tail im-
mersion, and thermal gradient tests (Marics et al. 2014). In
behavioral tests, FPP enhanced carrageenan-evoked nocicep-
tive behaviors and lowered paw withdrawal thresholds in the
radiant heat test in mice (Bang et al. 2010). Eugenol and car-
vacrol enhanced sensations of innocuous warmth and heat
pain on the human tongue (Klein et al. 2013) and enhanced
TG/DRG and trigeminal subnucleus caudalis (Vc) neuronal
responsiveness to innocuous warming and noxious heat
(Klein et al. 2014). Camphor, another TRPV3 agonist, weakly
enhanced warmth sensation when applied on human skin
(Green 1990), consistent with the rodent studies.

To date, there have been few animal studies of the behav-
ioral effects of TRPV3 agonists on thermal and mechanical
sensitivity. We therefore investigated the effects of two
TRPV3 agonists, eugenol and carvacrol, on thermal and

mechanical sensitivity in adult rats. To assess possible effects
of these agents on thermosensitivity, we used a thermal pref-
erence test. For this test, rats received topical application of
eugenol or carvacrol (1 or 10 %) to the ventral hindpaws and
were allowed to move freely between two adjacent thermo-
electric plates, one set at 30 °C and the other set at 35, 40, 45,
or 50 °C, on separate testing days. We measured the relative
amount of time the rat spent on each plate. We hypothesized
that if eugenol and carvacrol sufficiently enhanced warmth,
temperatures at the upper end of the thermoneutral zone might
be perceived to be unpleasantly hot and thus avoided. Data are
shown in Fig. 1. Overall, there was no significant effect of
chemical (i.e., eugenol or carvacrol) or concentration (1 or
10 %) on the relative percent time spent on either thermoelec-
tric plate for any temperature difference (p>0.05, ANOVA).
Temperatures of 35 and 40 °C were not significantly avoided
by any treatment group (Fig. 1a, b). However, there was a
tendency for eugenol- and carvacrol-treated rats to avoid the
warmer plate in the 30 vs. 45 °C preference test more, com-
pared to vehicle-treated rats (Fig. 1c), although this did not
reach statistical significance ([F(1,75)=0.235, p=0.63]). In
the 30 vs. 50 °C preference test, vehicle-treated rats avoided
the hotter temperature>95 % of the time (Fig. 1d), creating a
ceiling effect that may have obscured any further effects of
eugenol or carvacrol treatment.

Since eugenol and carvacrol also enhanced responses of
primary and second-order sensory neurons to noxious heat
(Klein et al. 2014), we additionally tested the effect of these
agents in the nociceptive thermal paw withdrawal
(Hargreaves) test. We observed a significant, concentration-
dependent increase in paw withdrawal latency (analgesia) ip-
silateral to the side of topical hindpaw application of eugenol
compared to baseline immediately after application (30 %:
196 %, 10 %: 168 %, 1 %: 153 %, 0.1 %: 145 %; Fig. 2a).
This was accompanied by a similar analgesic effect on the
contralateral paw at the highest concentration (30 %: 156 %,
Fig. 2b). Topical application of 30 % eugenol had the greatest
effect, being significantly different compared to 0.1 % euge-
nol on the ipsilateral paw and compared to all other concen-
trations of eugenol on the contralateral paws (Fig. 2a). The
similar ipsilateral and contralateral analgesic effects observed
on the paws after eugenol application are reminiscent of the
bilateral effects observed with topical menthol application
(Klein et al. 2010). Intraplantar injection of eugenol across
the same concentration range had no significant effect on ther-
mal paw withdrawal latencies for the ipsilateral (injected) or
contralateral paw (p>0.05, repeated measures ANOVA, data
not shown).

A similar albeit weaker analgesic effect was observed with
carvacrol. There was a significant difference between the 30
and 10 % carvacrol treatment groups (Fig. 2c; p<0.05, repeat-
ed measures ANOVA). Similar to the effect of topical appli-
cation of eugenol, there was a contralateral analgesic effect of
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carvacrol whereby the 30 % carvacrol group exhibited a sig-
nificantly (p<0.05, repeated measures ANOVA) longer

withdrawal latency for the contralateral hindpaw compared
to all other carvacrol or vehicle groups (Fig. 2d). Also similar

Fig. 1 Eugenol and carvacrol
effects on thermal preference
behavior. a Graph plots the mean
percent time that rats occupied
each of two adjacent
thermoelectric plates, one set at
30 °C and the other set at 35 °C.
Rats received topical application
to both ventral hindpaws of
vehicle, or a low (1 %) or high
(10 %) concentration of eugenol
or carvacrol. bAs in (a) for 30 vs.
40 °C temperature difference. c
As in (a) for 30 vs. 45 °C
temperature difference. d As in
(a) for 30 vs. 50 °C temperature
difference. Error bars: SEM; n=
16/group. There were no
significant differences between
vehicle-treated and eugenol- or
carvacrol-treated animals for any
temperature difference (p>0.05,
ANOVA)

Fig. 2 Concentration-dependent analgesic effects of topically applied
eugenol and carvacrol on thermal hindpaw withdrawal latency
(Hargreaves test). a Eugenol, ipsilateral hindpaw. Eugenol treatment
resulted in a concentration-dependent increase in withdrawal latency
(analgesia). Thirty percent eugenol was significantly different from
0.1 % eugenol (p<0.05, repeated measures ANOVA). b Eugenol,
contralateral hindpaw. The 30 % eugenol treatment was different from

all other concentrations (p<0.05, repeated measures ANOVA). c
Carvacrol, ipsilateral hindpaw. The 30 % carvacrol treatment group was
significantly different from 10 % carvacrol group (p<0.05, repeated
measures ANOVA). Error bars: SEM; n=8/group. d Carvacrol,
contralateral hindpaw, The 30 % carvacrol treatment group was
significantly different from all other concentrations (p<0.05, repeated
measures ANOVA). Error bars: SEM; n=8/all groups
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to the effects observed with eugenol, intraplantar injection of
carvacrol had no significant effect on ipsilateral or contralat-
eral mechanical paw withdrawal latencies (p>0.05, repeated
measures ANOVA, data not shown). The putative selective
TRPV3 agonist, FPP, also did not elicit signs of pain or
hyperalgesia (Bang et al. 2010). Overall, the ipsilateral and
contralateral analgesic effects of unilateral topical application
of eugenol and carvacrol are similar to effects reported previ-
ously with topical hindpaw application of menthol (Klein
et al. 2010). These bilateral analgesic effects might reflect
(a) a systemic action mediated by entry of eugenol and carva-
crol transdermally into the bloodstream, (b) a segmental sec-
ondary hyperalgesic effect crossing the midline, or (c) a coun-
terirritant effect mediated via activation of supraspinal de-
scending antinociceptive pathways.

It is noteworthy that analgesia was observed following top-
ical application, but not intraplantar injection, of eugenol and
carvacrol. We speculate that when applied topically, eugenol
and carvacrol readily accessed skin keratinocytes and/or su-
perficial sensory nerve endings to exert their analgesic effect.
The mechanism is unclear, but may involve a local anesthetic
action via inhibition of voltage-gated sodium channels in sen-
sory nerve endings (Park et al. 2006, 2009). Any role for
TRPV3 in this analgesic effect is also unclear. TRPV3 is high-
ly expressed in keratinocytes and is also expressed in sensory
neurons (Peier et al. 2002; Smith et al. 2002; Xu et al. 2002;
Chung et al. 2004; Moqrich et al. 2005). Consistent with this,
eugenol and carvacrol activated 7–30 % and FPP activated 2–
5 % of TG and DRG neurons (Klein et al. 2014). Eugenol and
carvacrol elicited irritation that is presumably mediated by
direct excitation of nerve endings expressing TRPV3, TRPA1,
and/or TRPV1, possibly followed by a delayed local anesthet-
ic effect to result in thermal analgesia. In contrast, intraplantar
injection of eugenol and carvacrol did not significantly affect
paw withdrawals. Conceivably, intraplantar injection deposit-
ed the agents more deeply in the skin, where they could not
readily access the more superficially located keratinocytes
and/or nerve endings.

Topical or intraplantar hindpaw application of neither eu-
genol nor carvacrol up to 30 % significantly affected mechan-
ical sensitivity, as assessed by hindpaw withdrawal thresholds
elicited by innocuous mechanical stimulation using an elec-
tronic von Frey filament delivered to the plantar surface
(p>0.05, repeated measures ANOVA, data not shown).

Citral (3,7-dimethyl-2,6-octadienal) is a fragrant terpene
compound found in lemongrass and citrus fruit. Similarly to
eugenol and carvacrol, citral is an agonist of TRPV3, and it is
also a partial agonist of TRPM8, TRPV1, and TRPA1 (Stotz
et al. 2008). Citral was also found to reduce formalin-induced
pain, mechanical hyperalgesia after nerve injury, and re-
sponses evoked by i.t. administration of substance P and
TNFα (Nishijima et al. 2014). The former effects were re-
versed by intraperitoneal (i.p.) administration of ketanserin,

a 5HT2A antagonist. It remains unknown if the thermal anal-
gesia seen with eugenol and carvacrol (and other terpenoid
agonists of TRPV3) is also dependent on inhibition of
TRPV1/TRPA1 (Stotz et al. 2008) or serotonergic systems.

TRPV4

TRPV4 is activated by a variety of endogenous stimuli includ-
ing heat, stretch, and chemical mediators, but not all stimuli
utilize the same intracellular pathways (Vriens et al. 2004).
TRPV4 is another candidate target for pain relief since it is
activated by inflammatory mediators such as arachidonic acid
and anandamide (Watanabe et al. 2003). TRPV4 is co-
expressed in dorsal root ganglia with substance P and CGRP,
and paw swelling after injection with formalin was greatly
reduced after either siRNA knockdown of TRPV4 or in
TRPV4 knockout animals (Vergnolle et al. 2010). TRPV4
knockout animals also showed a dramatic reduction in acetic
acid writhing 10 min after application (Suzuki et al. 2003).
These data suggest that TRPV4 plays an important role in
regulating inflammatory responses through the immune sys-
tem, in addition to modulating nociception.

TRPV4 is also associated with innocuous warmth sensitiv-
ity in sensory neurons and keratinocytes. TRPV4 is respon-
sive in the innocuous warming range, with a peak response at
approx. 34 °C (Guler et al. 2002; Watanabe et al. 2002).
Knockout mice lacking TRPV4 exhibited decreased sensitiv-
ity to warming as assessed by thermal gradient (Lee et al.
2005). TRPV4-deficient mice exhibited reduced thermal
nociception in carageenan-inflamed skin but not in naive skin
(Todaka et al. 2004). A more recent study has shown that
TRPV3/TRPV4 double knockout mice did not have a deficit
in warmth sensitivity, but exhibited reductions in nocifensive
reflexes as assessed by thermal paw withdrawal and tail im-
mersion tests (Huang et al. 2011).

Although the role of TRPV4 in heat sensation is unclear,
there is much evidence to support a role for TRPV4 in detect-
ing osmotic changes and mechanical stimuli (Mizuno et al.
2003; Liedtke and Kim 2005). Compared to littermate con-
trols, food-deprived TRPV4 knockout animals exhibited
hyperosmotic blood and increased systemic osmotic pressure
following challenge with systemic (i.p.) injection of
hyperosmotic saline (Liedtke and Friedman 2003). TRPV4
knockout animals also showed a reduced sensitivity to nox-
ious pressure stimulation of the tail, while retaining normal
thermal and low-threshold mechanical thresholds (Suzuki
et al. 2003). The disruption of mechanosensitivity in
TRPV4-deficient animals may be state-dependent, becoming
more apparent under inflammatory pain conditions. An in-
flammatory soup injected into the hindpaw of mice typically
induced mechanical hyperalgesia, which was absent in
TRPV4 knockout animals (Alessandri-Haber et al. 2006).
Proteases are well-known mediators of inflammatory pain,
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and their established presence upon tissue injury, in
turn, sensitizes primary afferent nerve fibers. TRPV4 is
sensitized by protease activated receptor agonists to in-
duce mechanical hyperalgesia in mice, an effect that is
lost in TRPV4 knockout animals (Grant et al. 2007).
Thus, TRPV4 may play an important role in sensitiza-
tion of mechanical nociception.

TRPM3

TRPM3 is expressed in a variety of tissues, including small
diameter sensory neurons (Vriens et al. 2011), the central ner-
vous system (Hoffmann et al. 2010; Zamudio-Bulcock et al.
2011) and pancreas (Thiel et al. 2013). TRPM3 is activated by
steroids, including pregnenolone sulfate (Wagner et al. 2008).
Intraplantar injection of pregnenolone sulfate induced
nocifensive behaviors (Vriens et al. 2011) and dose-
dependently increased nociceptive flexor responses in mice
(Ueda et al. 2001). These nocifensive behaviors were
abolished in TRPM3−/− knockout mice, but not in TRPV1
or TRPA1 knockout animals (Vriens et al. 2011). TRPM3-
positive neurons responded to heat (30–45 °C), and most of
these were capsaicin-sensitive. Heat responses of TRPM3
transfected HEK293T cells were also potentiated by pregnen-
olone. Not surprisingly, TRPM3 knockout mice have reduced
sensitivity to noxious heat, and surprisingly, noxious cold also
(Vriens et al. 2011). More studies will need to be done in order
to determine the role of TRPM3 under inflammatory and neu-
ropathic pain conditions.

TRPM8

TRPM8 is found in sensory neurons, including both TG and
DRG cells (Madrid et al. 2006; Reid et al. 2002). TRPM8 ago-
nists include compounds that induce a cooling sensation when
applied intraorally or topically, includingmenthol, linalool (from
lavender oil and rosewood), geraniol (from bergamont and co-
riander), and the synthetic agonist icilin (Behrendt et al. 2004).
Menthol induced oral irritation at high concentrations in human
subjects (Cliff and Green 1994; Dessirier et al. 2001; Klein et al.
2011). In rodents, menthol induced eye wiping behavior when
delivered in high doses to the cornea (Robbins et al. 2012).
Intraperitoneal injection of icilin induced nocifensive behaviors
including Bwet dog shakes^ and writhing (Wei 1976). Although
TRPM8 agonists have a pleasant aroma and are used for many
commercial purposes, in high doses, they are capable of evoking
nocifensive behaviors.

TRPM8 is activated by temperatures between 21 and 26 °C
in heterologous systems (McKemy et al. 2002; Nealen et al.
2003; Peier et al. 2002). Mice lacking TRPM8 exhibited de-
creased sensitivity to cold surfaces that are normally avoided,
as assessed by temperature preference and acetone-evoked
flinch tests (Bautista et al. 2007; Colburn et al. 2007; Dhaka

et al. 2007). Cold avoidance and icilin sensitivity were also
reduced or absent in TRPM8 conditionally ablated mice, even
though these animals appeared to have normal heat and me-
chanical pain sensitivity (Knowlton et al. 2013). In agreement
with these findings, global knockout mice lacking both
TRPM8 and TRPA1 were no different than knockout mice
lacking only TRPM8 in their avoidance of innocuous and
noxious cold stimuli (Knowlton et al. 2010). High concentra-
tions of topically applied menthol (40 %) enhanced cold pain
in human skin (Hatem et al. 2006; Namer et al. 2005;
Neddermeyer et al. 2008;Wasner et al. 2004) and oral mucosa
(Green 1992; Albin et al. 2008) while inhibiting warmth sen-
sitivity (Green 1986). Menthol also activated a large propor-
tion of cold-sensitive TG neurons (Thut et al. 2003) and en-
hanced responses of cold-sensitive superficial neurons in tri-
geminal subnucleus caudalis (Vc; Zanotto et al. 2007). In a
temperature preference test, low menthol concentrations
(<1 %) significantly increased avoidance of the 15 and
20 °C surfaces vs. a 30 °C surface, reflecting increased sensi-
tivity to cold (Klein et al. 2010). In rats, icilin enhanced
orofacial cold avoidance (Rossi et al. 2006). Menthol
interacts with TRPM8 to enhance cooling-evoked gating
(Malkia et al. 2007; Rohacs et al. 2005; Voets et al.
2004) and enhanced responses of sensory neurons to
cooling (Morenilla-Palao et al. 2014), properties that
may explain enhanced cold sensitivity following topical
application of menthol.

Topical application of menthol to the ventral hindpaw
evoked a dose-dependent heat analgesia (Klein et al. 2010),
consistent with previous human psychophysical studies show-
ing menthol suppression of heat pain (Albin et al. 2008; Green
1986, 2005; Klein et al. 2010) and capsaicin irritancy (Green
and McAuliffe 2000). Menthol suppressed nocifensive re-
sponses to noxious cold (−5 °C), as assessed by cold plate
test. Menthol had a biphasic effect on innocuous cold sensi-
tivity assessed using a two-temperature preference test, in-
creasing cold avoidance at low concentrations and reducing
cold avoidance at high concentrations (Klein et al. 2010).
Similarly, high (>10 %) menthol concentrations significantly
decreased avoidance of 15 and 20 °C surfaces compared to a
30 °C surface (Klein et al. 2010), indicating reduced aversion
to the colder surface consistent with cold hypoalgesia (i.e.,
analgesia). The mechanism underlying menthol’s analgesic
effect on thermal nociception is not known, but might involve
inhibition of TRPA1 or T-type calcium currents, expressed on
nociceptive nerve fiber endings in the periphery (Karashima
et al 2007; Macpherson et al. 2006; Swandulla et al. 1987).
Menthol also activates cold receptors that may result in central
inhibition of nociceptive spinal and trigeminal neurons. Men-
thol might additionally engage descending inhibition of spinal
nociceptive neurons, consistent with the contralateral an-
algesic effect of menthol seen in dorsal horn neurons
(Klein et al. 2012).
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TRPC5

TRPC5 is an additional cold-sensitive ion channel which
is predominantly expressed in the central nervous system
(Okada et al. 1998; Philipp et al. 1998) as well as kidney
and dorsal root ganglion (Inada et al. 2006). TRPC5 activity is
also potentiated by cooling (<30 °C), which does not inactivate
at persistently colder temperatures, unlike TRPM8 (Zimmer-
mann et al. 2011). TRPC5 is reportedly activated by
lysophospholipids (LPLs), especially lysophosphatidylcholine
(LPC) and lysophosphatidylinositol (Flemming et al. 2006).
Intrathecal injection of LPC evokes mechanical and thermal
hyperalgesia in mice (Inoue et al. 2008). On a similar note,
LPCs are known to induce demyelination and mechani-
cal hyperalgesia in rats (Bhanghoo et al. 2007) and pro-
mote inflammatory skin responses in humans (Ryborg
et al. 2000), perhaps through a TRPC5-dependent mech-
anism. It remains to be seen if other LPLs activate
TRPC5 and evoke nocifensive behaviors and/or promote
cold allodynia in rodents. It also remains to be seen if
TRPC5 represents another molecular target for the relief
of cold hyperalgesia seen in certain peripheral nervous
system diseases.

TRPA1

TRPA1 is a another ligand-gated ion channel in sensory neu-
rons that is activated by many inflammatory mediators and
pungent chemicals such as allyl isothiocynate (AITC),
cinnamaldehyde (CA), formalin, acrolein, and bradykinin
(Bautista et al. 2006; McNamara et al. 2007). Topical appli-
cation of CA elicited a burning sensation (Namer et al. 2005)
and CA and AITC induced heat hyperalgesia in human sub-
jects (Albin et al. 2008; Namer et al. 2005; Prescott and
Swain-Campbell 2000; Simons et al. 2003). Intraplantar for-
malin injection in rats elicited prolonged spontaneous paw
flinching, lifting, and licking which are indicative of inflam-
matory pain (Chen et al. 1999). Orofacial injections of forma-
lin or carageenan also induced nocifensive behaviors such as
cheek/face rubbing in rodents (Roboisson and Dallel 2004;
Moilanen et al. 2012). Animals deficient in TRPA1 exhibited
a remarkable reduction in formalin- and carageenan-induced
nocifensive behaviors (Macpherson et al. 2007; Moilanen
et al. 2012) indicating that TRPA1 is important for processing
inflammatory pain.

Consistent with the heat hyperalgesia observed in humans,
intraplantar CA (Tsagareli et al. 2010) and topical/intraplantar
AITC (Takechi et al. 2013; Weng et al. 2012) induced heat
hyperalgesia in rodents. Formalin also induced a delayed heat
hyperalgesia in mice (Karim et al. 2006). TRPA1 is highly co-
expressed with TRPV1 in sensory neurons (Story et al. 2003;
Kobayashi et al. 2005). Thus, TRPA1 agonists might induce
heat hyperalgesia via sensitization of cutaneous nociceptor

nerve ending that co-express TRPV1. Alternatively, TRPA1
agonists might act indirectly via intradermal release of inflam-
matory mediators to reduce the thermal threshold of TRPV1
or other heat-sensitive ion channels (Chuang et al. 2001;
Sugiura et al. 2002). Lastly, these agonists may additionally
trigger central sensitization (Urban et al. 1999), which could
explain the reduction in contralateral paw withdrawal
latency after unilateral topical application of CA
(Tsagareli et al. 2010).

TRPA1 was first reported to be activated by noxious cold
temperatures (<18 °C; Story et al. 2003; Kwan et al. 2006;
Karashima et al. 2009; del Camino et al. 2010), but this has
been disputed (Jordt et al. 2004; Bautista et al. 2006). As
previously mentioned, TRPA1/TRPM8 double-knockout ani-
mals did not exhibit any greater deficits in behavioral re-
sponses to cold temperatures than TRPM8 knockout mice,
arguing against a role for TRPA1 in cold detection (Knowlton
et al. 2010). However, TRPV1-ablated (and consequently
TRPA1-ablated) mice showed greater aversion to cold tem-
peratures compared to control mice (Pogorzala et al. 2013),
suggesting that TRPV1- and TRPA1-expressing sensory neu-
rons do contribute to cold sensitivity. Consistent with this,
intraplantar injection of CA in rats resulted in enhanced cold
avoidance as assessed by thermal preference test (Tsagareli
et al. 2010). Both CA and AITC significantly lowered with-
drawal thresholds in cold plate tests (−5 to +5 °C) indicative of
cold hyperalgesia (Tsagareli et al. 2010; Nozadze et al. 2014).
However, neither AITC nor CA significantly affected re-
sponses of rat-wide dynamic range or nociceptive-specific
spinal cord dorsal horn neurons to cooling of hindpaw skin
(Merrill et al. 2008; Sawyer et al. 2009).Moreover, both AITC
and CA induced a brief cold hyperalgesia on the tongue in
human subjects (Albin et al. 2008). Additional explanations
for the discrepancies in the involvement of TRPA1 in thermal
and mechanical pain include physiological factors such as
stress, cellular damage, or infection (da Costa et al. 2010;
Moilanen et al. 2012; Meseguer et al. 2014).

Since its discovery, TRPA1 has been implicated in
mechanotransduction pathways (Corey et al. 2004; Kwan
et al. 2009). Slowly adapting currents evoked by mechanical
pressure stimuli applied to the membrane of DRG cells were
absent in a population of small diameter neurons after either
TRPA1 deletion or antagonism (Vilceanu and Stucky 2010).
A separate study indicated that TRPA1 function is essential for
intermediately adapting currents in DRG cells; these are the
most abundant type of currents present in nociceptors (Brierly
et al. 2011). Pharmacological blockade of TRPA1 decreased
formalin and mechanically evoked responses in C fibers
(Kerstein et al. 2009.) These data imply that TRPA1 is essen-
tial for determining the duration and/or intensity of sensory
neuronal responses to mechanical stimulation, factors that are
crucial for encoding mechanical pain. Topical application of
AITC or CA induced mechanical allodynia in humans
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(Koltzenburg et al. 1992; Namer et al. 2005). Using rodent
models, intraplantar injection of TRPA1 agonists reduced me-
chanical paw withdrawal thresholds (Trevisani, et al. 2007;
Chen et al. 1999). The TRPA1 antagonists HC-030031 and
AP18 both attenuated mechanical hyperalgesia in inflamma-
tory (e.g., CFA) and nerve injury models (Eid et al. 2008;
Petrus et al. 2007). Thus, TRPA1 may contribute to mechan-
ical hyperalgesia in addition to acute mechanical pain.

Conclusions and Implications

At least eight (and possibly more) thermosensitive ion chan-
nels contribute to thermoreception, mechanoreception and
nociception across a wide range of environmental stimuli.
Future studies will continue to investigate the biophysical
mechanisms of TRP channel gating by thermal, chemical
and mechanical stimuli (Latorre et al. 2007). The role of
thermosensitive TRP channels in pain sensation is of particu-
lar interest (Julius 2013), since TRP channel agonists/
antagonists present interesting new targets for the develop-
ment of novel analgesics to treat chronic pain (Nilius et al.
2007; Patapoutian et al. 2009; Brenderson et al. 2013).
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